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Abstract

Generating human videos based on single images entails
the challenging simultaneous generation of realistic and vi-
sual appealing appearance and motion. In this context,
we propose a novel conditional GAN architecture, namely
ImaGINator, which given a single image, a condition (la-
bel of a facial expression or action) and noise, decomposes
appearance and motion in both latent and high level fea-
ture spaces, generating realistic videos. This is achieved by
(i) a novel spatio-temporal fusion scheme, which generates
dynamic motion, while retaining appearance throughout
the full video sequence by transmitting appearance (orig-
inating from the single image) through all layers of the
network. In addition, we propose (ii) a novel transposed
(1+2)D convolution, factorizing the transposed 3D convo-
lutional filters into separate transposed temporal and spa-
tial components, which yields significantly gains in video
quality and speed. We extensively evaluate our approach
on the facial expression datasets MUG and UvA-NEMO,
as well as on the action datasets NATOPS and Weizmann.
We show that our approach achieves significantly better
quantitative and qualitative results than the state-of-the-
art. The source code and models are available under
https://github.com/wyhsirius/ImaGINator.

1. Introduction

Generating realistic human videos based on single im-
ages brings to the fore following three challenges: (a) re-
taining of human appearance throughout the video, (b) gen-
erating (uncertain) motion, as well as (c¢) modeling of
spatio-temporal consistency. Finding suitable representa-
tion learning methods, which are able to address these chal-
lenges, is critical to the final visual quality and plausibility
of the rendered novel video sequences.

Existing methods predominantly treat generation of high
dimensional video as a separate two step modeling of low-
dimensional temporal and spatial generation. Such meth-
ods (e.g. MoCoGAN) [37], are grounded on the seq2seq
[35] architecture. In particular associated video generation
in such methods includes two steps: (1) motion generation
in a latent space, proceeded by (2) motion and appearance-
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Figure 1: The proposed ImaGINator architecture incorporates
Generator G, image Discriminator Dy, as well as video Discrimi-
nator Dy. G accepts cq, ¢, and noise as input, and seeks to gen-
erate realistic video sequences. While Dy discriminates whether
the generated images contain an authentic appearance, Dy addi-
tionally determines whether the generated videos contain an au-
thentic motion.

generation, where frames are generated individually, com-
bining the single-input-image-appearance information with
each motion vector generated in (1). These two steps aim
at decomposing video generation into the generation of in-
dividual frames, which imparts the benefit of straightfor-
ward optimization. Two step methods fail to address the
above named challenges (a) and (c), i.e. appearance is not
sufficiently retained and spatio-temporal consistency is not
modeled, as temporal consistency is not modeled in higher
level spatial spaces.

In contrast to two step methods, VGAN [39] utilized a
single step to generate future frames by leveraging on 3D
convolution to model spatio-temporal features in high and
low levels. We here note that utilizing 3D convolution di-
rectly challenges optimization. In addition, the generated
video was decomposed into foreground and background, in
two streams, which required an additional branch to model
background information, increasing the complexity of the
model.

Motivated by the above, we propose a new conditional
GAN model, referred to as ImaGINator, generating video
sequences given a single image c,, a motion class c¢,, (i.e.
facial expression or human action), as well as noise. ImaG-
INator incorporates a Generator G, a video Discriminator



Dy, as well as an image Discriminator Dy, as depicted in
Figure 1. While the Generator GG, based on a fully con-
volutional *Encoder-Decoder’-architecture, accepts c, and
cm as input to generates video sequences, the image Dis-
criminator D; and the video Discriminator Dy, assess the
authenticity of appearance and motion of generated videos.

ImaGINator is streamlined to exploit the joint benefits
of single and two-step methods by incorporating following
new properties.

A novel spatio-temporal fusion mechanism, aiming at
retaining the appearance by enforcing G to employ the
spatial information in both, low and high feature levels.
By injecting ¢, into the Decoder, we enable G to place
emphasis on generating solely motion. This is based
on the hypothesis that a video can be disentangled into
appearance and motion in the latent space, as well as
in multi-level spatio-temporal feature spaces. While at
each level appearance is retained, only the motion is
being altered.

A novel transposed (1+2)D convolution, factorizing
the transposed 3D convolutional filters into separate
temporal and spatial components. This brings several
benefits: (i) an additional nonlinear rectification allows
the model to represent more complex functions, (ii) it
facilitates optimization, as transposed (1+2)D convo-
lution blocks are easier to optimize than the full trans-
posed 3D convolutional filters, and (iii) it yields sig-
nificant gains in both video quality and speed.

Towards comparing our algorithm with other video gen-
eration algorithms, we augment two state-of-the-art video
generation algorithms, namely VGAN and MoCoGAN, in
order to adhere to our image-to-video-generation-setting.
We proceed to provide a comparison, showing that our
method outperforms these methods qualitatively (based on
a human study of 30 subjects) and quantitatively on both, fa-
cial expression (MUG and UvA-NEMO), as well as human
action datasets (Weizmann and NATOPS) by presenting re-
sults pertaining to five evaluation metrics. In addition, we
conduct an ablation study, which validates the effectiveness
of components in ImaGINator.

We note that while ImaGINator can be generally applied
to many domains of computer vision, we here present ex-
periments in the language of facial expression and action
generation. Specifically, we focus on the setting, where we
provide jointly a single frame of a subject, defining the ap-
pearance, and a condition (i.e. label), determining facial ex-
pression or human action, and proceed to generate a video
exhibiting the subject from the initial frame performing the
named expression or action.

2. Related Work

Conditional Generation accepts as inputs both, latent
variables, as well as known auxiliary information, such as

class labels. The majority of works have expanded either
Generative Adversarial Networks (GANSs) [9] or Variational
Auto-Encoders (VAEs) [18] in this context, by augment-
ing GANs and VAEs with the capability of generating data
samples based on class labels. Conditional generation has
been beneficial in domain transfer, super-resolution imag-
ing, video to video translation, as well as image and face
editing [13, 54, 26, 15, 20, 43, 4, 16, 45, 46, 50, 44]. Most
recently, a number of new techniques have been proposed to
stabilize the training process of conditional GANs (cGANs)
and improve the visual quality of generated images [27, 3].
Our proposed ImaGINator is a cGAN architecture, aiming
at generating facial expressions / human actions from single
images, where a category label is provided in both G and D.

Unsupervised video prediction based on multiple
frames involves the use of multiple frames as input and
the prediction of future frames by learning to extrapo-
late. Video prediction has been predominantly focused on
predicting high-level semantics in video, such as action
[33, 19, 8, 25, 38, 47, 6, 5], event [51, 12, 32], semantic
segmentation [24], as well as motion [30, 41, 40, 22]. In
contrast to such works, our model is targeted to generate a
video sequence based on a single frame. Since future mo-
tion is very uncertain under this setting, we leverage action
label as a guidance.

Video generation based on a single image is challeng-
ing and hence current methods have proposed to decom-
pose it into sub-tasks. One line of scientific works have
utilized in this additional context-information, e.g. human
key points [14, 49, 42], 3D face mesh [52] and optical flow
[21], as future motion guidance. This additional informa-
tion is either pre-computed throughout the generated video
[14, 52] or predicted based on an initial input [49, 42]. The
additional information guides a conditional image trans-
lation, which though results in lack of modeling spatio-
temporal correlations.

Deviating from the above, MoCoGAN [37], VGAN [39]
and Xue et al. [48] attempted to hallucinate future frames
directly in the pixel space. The latter proposed a proba-
bilistic model, predicting dynamic filters on the input im-
age to render next frame, leading to prediction of only one
future frame. MoCoGAN is based on a seq2seq [35] ar-
chitecture, aiming at separating spatio-temporal generation
into two steps (disentangling each video frame into motion
and appearance in different latent spaces). However, such
two-step generation omits the modeling of temporal consis-
tency in higher spatial levels, which generally fails to retain
original appearance. VGAN employs a single step method
towards modeling multi-level spatio-temporal consistency
through 3D convolution by decomposing videos into fore-
ground and background. Although it models both, low and
high level features, due to lack of frame quality constrains,
generated results are of inherently lower visual quality, i.e.
are blurry.

Deviating from the above, we propose a single step ar-



Figure 2: Overview of the proposed ImaGINator. In the Generator G, the Encoder firstly encodes an input image ¢, into a single
vector p. Then, the Decoder produces a video based on a motion ¢,,, and a random vector z. By using spatio-temporal fusion, low level
spatial feature maps from the Encoder are directly concatenated into the Decoder. While D; discriminates whether the generated images
contain an authentic appearance, Dy additionally determines whether the generated videos contain an authentic motion.

chitecture, which decomposes motion and appearance in
multi-level feature spaces for image to video generation.

The rest of the paper is organized as follows. In Sec-
tion 3 we introduce the new ImaGINator framework. Qual-
itative and quantitative analyses of our model are presented
in Section 4. Section 5 concludes the paper and provides
directions for future research.

3. Proposed Approach

Our goal is to generate a video sequence given an ap-
pearance information (as a single image frame) and a mo-
tion class (e.g. determining the facial expression). We here
assume that a video y can be decomposed into appearance
¢, (originating from the input-image) and motion ¢,, (orig-
inating from the category-label), based on which we pro-
ceed to generate videos. Hence, we formulate our task as
learning a conditional mapping G: fz,c,, ¢, ¥ y, where
z  N(0, 1) denotes the random noise.

Towards achieving our goal, we propose a framework
that consists of the following 3 main components: (i) Gen-
erator GG, that accepts ¢,, ¢,, and noise as inputs, and seeks
to generate realistic video sequences, (ii) image Discrimi-
nator Dy that determines the frame-level based appearance
quality, and (iii) video Discriminator Dy,, which addition-
ally discriminates, whether the generated video sequences
contain authentic motion, see Figure 1.

3.1. Network Architecture

In the following we proceed to describe the architecture
of our video prediction network, providing details on G, Dy
and Dy, as illustrated in Figure 2. In addition, we elaborate
on the proposed spatio-temporal fusion scheme, as well as
the transposed (1+2)D convolution.

3.1.1 Generator

Our Generator GG consists of an image Encoder and a video
Decoder, see Figure 2. The Encoder extracts appearance
information in various layers, from shallow, fine layers to
deep, coarse layers. It encodes the input image ¢, into a
latent vector p, and then by concatenating p, ¢, as well
as the random noise z N (0, 1), the decoder generates a
video sequence.

In our Generator G, we extend the idea of using 2 skip
connections from the FCN-8 [23] to 4 skip connections, but
with the difference that the original skip connections are
applied to fuse predictions, whereas ours are applied to fuse
appearance and motion spatio-temporal features. Our skip
connections allow the Decoder to access low-level features
directly from the Encoder, enabling the Decoder to reuse
the appearance features at each time slice and to focus on
generating motion.

Spatio-temporal fusion. Let G have n layers and let
FZ-H W C1 T pe the feature map from the i layer with
C1 number of channels in G, ff_{t WGy 2f1, . Tg be

the t*" feature map in F; and Ff iW Cz represent the fea-

ture map from (n  i)*" layer, see Figure 3. We design
the outputs of each respective layer from our Decoder and
Encoder to have the same spatial dimensions  W. We
propose a fusion mechanism, concatenating each f; ; with
F,, ; in a channel-wise dimension with a result of a new
feature map F, ¥ W (C1+C2) T pamed spatio-temporal
fusion. Here we note that each initial feature map F; repre-
sents spatio-temporal features of several consecutive frames
in the generated video. By spatio-temporally fusing F; and
F,, ; directly in different feature levels, the input informa-
tion can be well preserved in the generated video.

Further, we fuse the category label (constituting a one-



